# **Building Robust Ensembles via Margin Boosting**

Dinghuai Zhang, Hongyang Zhang, Aaron Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala

### Motivation

Boosting algorithms aim to iteratively learn weak classifiers and combine them as an ensemble to form a strong classifier.

Can we combine multiple base classifiers into a strong classifier that is robust to adversarial attacks?

## Margin-boosting framework

We propose a margin-boosting framework (Freund et al., 1996) for adversarial robustness.



This is a two-player zero-sum game. Based on this, we show the optimality of margin boosting.

**Theorem 1.** The following is a necessary and sufficient condition on  $\mathcal{H}$  that ensures that any maximizer of Equation (2) achieves 100% adversarial accuracy on S: for any probability distribution P' over points in the set  $S_{aug} := \{(\mathbf{x}, y, y', \delta) : (\mathbf{x}, y) \in S, y' \in \mathcal{Y} \setminus \{y\}, \delta \in \mathcal{B}(\epsilon)\},$ there exists a classifier  $h \in \mathcal{H}$  which achieves slightlybetter-than-random performance on P'

> $\mathbb{E}_{(\mathbf{x},y,y',\delta)\sim P'}[\mathbb{I}(h(\mathbf{x}+\delta)=y)]$  $\geq \mathbb{E}_{(\mathbf{x},y,y',\delta)\sim P'}[\mathbb{I}(h(\mathbf{x}+\delta)=y')]+\tau.$

*Here*  $\tau > 0$  *is some constant.* 

# **Robust boosting algorithm**

#### Algorithm 1 MRBOOST

```
    Input: training data S, boosting iterations T, learning rate η.
    Let P<sub>1</sub> be the uniform distribution over S<sub>aug</sub>.
    for t = 1... T do
    Compute h<sub>t</sub> ∈ H as the minimizer of:

        min E<sub>(x,y,y',δ)~P<sub>t</sub>[mg<sub>L</sub> (h(x + δ), y, y')].
    Compute probability distribution P<sub>t+1</sub>, supported on S<sub>aug</sub>, as:
</sub>
```

$$P_{t+1}(\mathbf{x},y,y',\delta) \propto \exp\left(\eta \sum_{j=1}^t \mathrm{mg}_{\mathrm{L}}\left(h_j(\mathbf{x}+\delta),y,y'
ight)
ight)$$

6: end for 7: Output: return the classifier  $h_{Q(T)}^{am}(\mathbf{x})$ , where Q(T) is the

uniform distribution over  $\{h_t\}_{t=1...T}$ .

- Our algorithm follows an online learning framework, involving a new base learner every iteration.
- The learning of every base classifier relies on a minimization step on 0 - 1 margin loss with distribution P<sub>t</sub> on augmented data S<sub>aua</sub>.
- The algorithm returns an "argmax" classifier from the ensemble Q(T).



Based on the margin-boosting framework, we design a differentiable surrogate for 0 – 1 margin loss called margin cross entropy (MCE) loss:

 $\ell_{\mathrm{MCE}}(g_{\theta}(\mathbf{x}), y, y') \coloneqq \ell_{\mathrm{CE}}(g_{\theta}(\mathbf{x}), y) + \ell_{\mathrm{CE}}(-g_{\theta}(\mathbf{x}), y')$ 

where 
$$\ell_{\mathrm{CE}}(g(\mathbf{x}), y) \coloneqq -[g(\mathbf{x})]_y + \log\left(\sum_{j \in \mathcal{Y}} \exp{[g(\mathbf{x})]_j}\right)$$

• We also propose to use the following Sampler.ALL in MRBoost.NN for better stability:

$$\delta_b \in rgmax_{\delta \in \mathcal{B}(\epsilon)} \sum_{y' \in \mathcal{Y} ackslash \{y_b\}} \ell_{ ext{MCE}} \left( \sum_{j=1}^t g_{ heta_j}(\mathbf{x}_b + \delta), y_b, y' 
ight)$$

### **Experiment results**

Results on MCE effectiveness with single learner:

| Table 2. Experiments with WideResNet-34-10 on CIFAR10. |                |                  |                       |                       |                |                  |  |  |  |  |
|--------------------------------------------------------|----------------|------------------|-----------------------|-----------------------|----------------|------------------|--|--|--|--|
| METHOD                                                 | CLEAN          | FGSM             | CW                    | PGD-20                | PGD-100        | AUTOATTACK       |  |  |  |  |
| AT<br>AT + MCE                                         | 86.31<br>85.56 | $64.01 \\ 64.20$ | $53.28 \\ 53.46$      | 54.12<br>55.40        | 53.75<br>55.14 | 50.13<br>52.07   |  |  |  |  |
| TRADES<br>TRADES + MCE                                 | 83.25<br>84.76 | 62.48<br>64.63   | $49.51 \\ 49.49$      | 54.97<br>56.23        | 54.80<br>55.99 | $51.92 \\ 52.40$ |  |  |  |  |
| MART<br>MART + MCE                                     | 83.12<br>83.65 | 63.68<br>64.3    | 52.57<br><b>54.24</b> | 55.75<br><b>56.31</b> | 55.49<br>56.15 | 50.85<br>52.81   |  |  |  |  |
| GAIR<br>GAIR + MCE                                     | 83.91<br>84.55 | 65.79<br>67.96   | 49.44<br><b>49.94</b> | 58.99<br>61.79        | 58.97<br>61.93 | $44.04 \\ 44.22$ |  |  |  |  |
| AWP<br>AWP + MCE                                       | 85.32<br>84.97 | 65.89<br>66.53   | 55.40<br>56.23        | 57.37<br>58.40        | 57.08<br>58.12 | 53.67<br>54.69   |  |  |  |  |

#### Results under boosting settings:

| Table 3. Boosting experiments with ResNet-18 being the base classifier. |             |       |             |       |             |       |             |       |             |       |  |  |
|-------------------------------------------------------------------------|-------------|-------|-------------|-------|-------------|-------|-------------|-------|-------------|-------|--|--|
| METHOD                                                                  | ITERATION 1 |       | ITERATION 2 |       | ITERATION 3 |       | ITERATION 4 |       | ITERATION 5 |       |  |  |
|                                                                         | CLEAN       | ADV   |  |  |
| WIDER MODEL                                                             | 82.61       | 51.73 | _           | _     | _           | _     | _           | _     | _           | _     |  |  |
| DEEPER MODEL                                                            | 82.67       | 52.32 | _           | _     | _           | -     | _           | _     | _           | —     |  |  |
| ROBBOOST + RNDINIT                                                      | 82.00       | 51.05 | 84.58       | 49.95 | 83.87       | 51.66 | 82.56       | 52.72 | 81.44       | 52.92 |  |  |
| ROBBOOST + PERINIT                                                      | 82.18       | 50.97 | 85.60       | 50.13 | 84.59       | 51.77 | 84.21       | 52.79 | 82.78       | 53.28 |  |  |
| MRBOOST.NN + RNDINIT                                                    | 81.04       | 51.83 | 84.61       | 52.68 | 84.93       | 53.51 | 85.01       | 53.95 | 85.35       | 54.13 |  |  |
| MRBOOST.NN + PERINIT                                                    | 81.34       | 51.92 | 84.97       | 52.97 | 85.28       | 53.62 | 85.99       | 54.26 | 86.16       | 54.42 |  |  |